Symmetric and antisymmetric properties of solutions to kernel-based machine learning problems

نویسنده

  • Giorgio Gnecco
چکیده

A particularly interesting instance of supervised learning with kernels is when each training example is associated with two objects, as in pairwise classification (Brunner et al., 2012), and in supervised learning of preference relations (Herbrich et al., 1998). In these cases, one may want to embed additional prior knowledge into the optimization problem associated with the training of the learning machine, modeled, respectively, by the symmetry of its optimal solution with respect to an exchange of order between the two objects, and by its antisymmetry. Extending the approach proposed in (Brunner et al., 2012) (where the only symmetric case was considered), we show, focusing on support vector binary classification, how such embedding is possible through the choice of a suitable pairwise kernel, which takes as inputs the individual feature vectors and also the group feature vectors associated with the two objects. We also prove that the symmetry/antisymmetry constraints still hold when considering the sequence of suboptimal solutions generated by one version of the Sequential Minimal Optimization (SMO) algorithm, and we present numerical results supporting the theoretical findings. We conclude discussing extensions of the main results to support vector regression, to transductive support vector machines, and to several kinds of graph kernels, including diffusion kernels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling Behaviors of Symmetric and Antisymmetric Functionally Graded Beams

The present study investigates buckling characteristics of both nonlinear symmetric power and sigmoid functionally graded (FG) beams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by the sigmoid-law distribution (S-FGM), and the symmetric power function (SP-FGM). These functions have smooth variation of properties across the boundary rather tha...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

تحلیل ارتعاشات آزاد ورق های بیضوی ساخته شده از مواد FGM

This paper deals with a free vibration analysis of functionally graded elliptical plates with different classical boundary conditions on the basis of polynomial-Ritz method and classical plate theory. The proposed admissible function is capable to obtain accurate natural frequencies of various classical boundary conditions namely, clamped, free and simply supported edges. The mechanical propert...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.08501  شماره 

صفحات  -

تاریخ انتشار 2016